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Abstract

A new stochastic averaging technique for analyzing the response of a single-degree-of-freedom Preisach hysteretic

system with nonlocal memory under stationary Gaussian stochastic excitation is proposed. An equivalent nonhysteretic

nonlinear system with amplitude-envelope-dependent damping and stiffness is firstly obtained from the given system by

using the generalized harmonic balance technique. The relationship between the amplitude envelope and the energy

envelope is then established, and the equivalent damping and stiffness coefficients are expressed as functions of the energy

envelope. The available range of the yielding force of the system is extended and also the strong nonlinear stiffness of the

system is incorporated so as to improve the response prediction. Finally, an averaged Itô stochastic differential equation

for the energy envelope of the system as one-dimensional diffusion process is derived by using the stochastic averaging

method of energy envelope, and the Fokker–Planck–Kolmogorov equation associated with the averaged Itô equation is

solved to obtain stationary probability densities of the energy envelope and amplitude envelope. The approximate

solutions are validated by using the Monte Carlo simulation.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Hysteretic behavior exists widely in mechanical and structural systems [1–3], in which hysteretic forces
depend on not only the instantaneous deformation but also the history of deformation. Furthermore, there
has been an increasing interest recently in using smart materials such as piezoceramics, shape memory alloys,
and electro-/magneto-rheological fluids, which exhibit significant hysteresis [4–7]. Several models such as
bilinear model, Bouc–Wen model, Jenkins–Iwan model and Masing model have been proposed for
representing the hysteretic constitutive relationship [8–11]. Almost all hysteresis models used in mechanical
and structural disciplines, however, can only represent hysteresis with local memory. In recent years, the
Preisach model extensively used for ferromagnetism has been applied to the field of engineering mechanics.
The main feature of this model is its capability to describe hysteresis nonlinearity with nonlocal memory and
to capture the crossing of minor loops which can arise in many real materials [2].
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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In mechanical and structural engineering, the dynamic loading to which hysteretic systems are subjected is
usually random in nature. It is extremely difficult to analytically determine the exact random responses of
hysteretic systems, and thus some approximate solution techniques have been developed. The random
dynamic responses of bilinear [8,9], Bouc–Wen [12] and Duhem hysteretic systems [13] have been studied by
using the equivalent linearization method and the stochastic average method. However, there are only a few
papers studying the random response of Preisach hysteretic systems. The mean output of the Preisach model
to stochastic input has been studied by Mayergoyz and Korman [14–16]. The second-order statistics of
stochastic dynamic response of the Preisach hysteretic systems have been approximately determined by Ni
et al. [17] and Ying et al. [18] based on the covariance and switching probability analysis of a nonlocal memory
hysteretic constitutive model. Recently, a stochastic averaging procedure for Preisach hysteretic systems has
been developed by Spanos et al. [19] and applied to the random vibration analysis of smart memory alloy
systems [20]. They firstly obtained the equivalent nonlinear system by using the harmonic balance technique,
and then obtained the Fokker–Planck–Kolmogorov (FPK) equation governing the evolution of probability
density functions of the amplitude envelope by using the stochastic averaging method.

In the present paper, a new stochastic averaging technique is proposed based on the generalized harmonic
balance technique and the stochastic averaging method of energy envelope. Firstly, an equivalent
nonhysteretic nonlinear system with amplitude-envelope-dependent damping and stiffness is obtained by
using the generalized harmonic balance technique. Secondly, the relationship between the amplitude envelope
and the energy envelope is established, and equivalent damping and stiffness coefficients are expressed as
functions of the energy envelope. Thirdly, an averaged Itô stochastic differential equation for the energy
envelope of the system as one-dimensional diffusion process is derived by using the stochastic averaging
method of energy envelope, and the FPK equation associated with the averaged Itô equation is solved to
obtain stationary probability densities of the energy envelope and amplitude envelope. The approximate
solutions are validated by using the Monte Carlo simulation, and also are compared with the analytical
solutions given in Ref. [19] for a special case.
2. Preisach hysteretic model

The Preisach hysteretic model is expressed in terms of the following integral:

f ðtÞ ¼

Z Z
aXb

mða;bÞgabðxðtÞÞdadb (1)

where x(t) and f(t) denote the displacement and hysteretic force, respectively. mða;bÞ is a weighting function,
called the Preisach function, with support on a limiting triangle D of the (a,b)-plane with line a ¼ b being the
hypotenuse and point ðaP;bPÞ being the vertex. The triangle D in the half-plane aXb is called the Preisach
plane (see Fig. 1). mða; bÞ is equal to zero outside the triangle D. gabðxÞ is the hysteretic relay operator as shown
in Fig. 2. It is a two-position relay with values +1 and �1 corresponding to ‘‘up’’ and ‘‘down’’ positions,
respectively, and is given by Refs. [1,2]

gabðxÞ ¼
þ1 x4a or x4b and decreasing

�1 xob or xoa and increasing

(
(2)

The Preisach model, expressed as the superposition of a continuous family of elementary rectangular loops,
can be interpreted in terms of the spectral decomposition of a complicated hysteretic constitutive law with
nonlocal memory into the simplest hysteretic relay operator gabðxÞ with local memory. The Preisach hysteretic
behavior is completely characterized by the weighting function mða;bÞ. For arbitrary displacement input x(t),
the Preisach hysteretic force output f(t) can be determined by the weighting function together with a staircase
line L(t) (see Fig. 1). And the staircase line divides the Preisach plane into two parts: the domain SþðtÞ

encompassing the set of the relay in the +1 status, and the domain S�ðtÞ encompassing the set of the relay in
the �1 status. Each vertex of the staircase line is associated with dominant maximum Mk or minimum mk of
the displacement x(t). The nonlocal selective memory is then stored in this way. Therefore, the Preisach
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Fig. 1. Preisach plane.
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Fig. 2. Hysteretic relay operator.
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hysteretic restoring force f(t) can be expressed as

f ðtÞ ¼

Z Z
SþðtÞ

mða;bÞdadb�
Z Z

S�ðtÞ

mða; bÞdadb

¼ 2

Z Z
SþðtÞ

mða;bÞdadb�
Z Z

D

mða;bÞdadb (3)

The Preisach function of a specific hysteretic system can be determined by the first-order transition curves
[2]. Lubarda et al. [11] derived the Preisach function mða;bÞ in a closed form for classical rheological models by
using this procedure. For the Iwan–Jenkins model, it is

mða;bÞ ¼
kJ

2
dða� bÞ �

kJ

2

1

f y;max � f y;min

H a� b� 2
f y;min

kJ

� �
�H a� b� 2

f y;max

kJ

� �� �( )
(4)

where dð�Þ and Hð�Þ are the Dirac delta function and the Heaviside function, respectively. The symbol kJ

represents the linear stiffness of the individual Jenkins element. fy is the yielding force, and f y;minpf ypf y;max.
The weighting function is defined in the domain A as shown in Fig. 3. The corresponding Preisach hysteretic



ARTICLE IN PRESS

βα =

β

A

�

�−� = 2fy,max  kJ

�−� = 2fy,min  kJ

Fig. 3. Domain of the weighing function for the Iwan–Jenkins model.
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force can be obtained by substituting Eq. (4) into Eq. (1) as

f ðtÞ ¼
kJ

2

Z aP

�aP

ga;aðxÞda�
kJ

2

1

f y;max � f y;min

Z Z
A

gabðxÞdadb

" #
(5)

By using Eq. (3), the hysteretic force (5) can be rewritten as

f ðtÞ ¼ kJxðtÞ �
k2

J

4

1

f y;max � f y;min

2

Z Z
Sþ

A
ðtÞ

da db�
Z Z

A

dadb

 !
(6)

In general, the restoring force of smart materials is anti-symmetric as a function of deformation and then
the restoring force of relevant stochastic hysteretic systems with zero mean will be anti-symmetric too. The
stochastic hysteretic systems with nonzero mean can be converted into the corresponding one with zero mean.
In the case of hysteretic systems with zero mean, let aP ¼ �bP ¼ f y;max=kJ . Then the shaded area A is a
triangle defined by a ¼ aP; b ¼ bP and a� b ¼ 2f y;min=kJ . According to Lubarda et al. [11], the domain A is
initially divided into two equal parts and thus f(0) ¼ 0. Introduce function

F ðai; biÞ ¼
½2f y;min þ kJðbj � ajÞ�

2

2k2
J

(7)

which represents the area of a triangle surrounded by a ¼ ai; b ¼ bi and a� b ¼ 2f y;min=kJ (see Fig. 4). It is
assumed that the vibration amplitude varies slowly with respect to time. When the present vibration amplitude
ā is equal to or greater than f y;min=kJ , i.e., āXf y;min=kJ (see Fig. 5) [19], the hysteretic force for the ascending
status is given by

f ðtÞ ¼ kJxðtÞ �
k2

J

4

1

f y;max � f y;min

4 F
f y;min

kJ

; bP

� �
� F

f y;min

kJ

;b1

� �� ��

þ2H xðtÞ � bn�1 �
2f y;min

kJ

� �
F ðxðtÞ; bn�1Þ þ 2

Xn�1
j¼2

ðF ðaj ; bj�1Þ � F ðaj ;bjÞÞ � F ðaP;bPÞ

#
(8)
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and that for the descending status is

f ðtÞ ¼ kJxðtÞ �
k2

J

4

1

f y;max � f y;min

4 F
f y;min

kJ

;bP

� �
� F

f y;min

kJ

; b1

� �� �
þ 2F ðan; bn�1Þ

�

�2H an �
2f y;min

kJ

� xðtÞ

� �
F ðan; xðtÞÞ þ 2

Xn�1
j¼2

ðF ðaj ; bj�1Þ � F ðaj ;bjÞÞ � F ðaP; bPÞ

#
(9)

When the present vibration amplitude ā is smaller than f y;min=kJ , i.e., āof y;min=kJ (see Fig. 6), the hysteretic
force for both the ascending status and descending status is as follows:

f ðtÞ ¼ kJxðtÞ � k2
J

1

f y;max � f y;min

F
f y;min

kJ

;bP

� �
� F

f y;min

kJ

;b1

� �� �

�
k2

J

4

1

f y;max � f y;min

2
Xs

j¼2

ðF ðaj ;bj�1Þ � F ðaj ;bjÞÞ � F ðaP;bPÞ

" #
(10)

In Eqs. (8)–(10), ai and bi are the dominant maximum and minimum of displacement x(t), respectively. If
the present vibration amplitude ā is smaller than f y;min=kJ , the minimum of the dominant maxima as and the
maximum of the dominant minima bs are much close to f y;min=kJ and �f y;min=kJ , respectively.

3. Equivalent nonhysteretic nonlinear stochastic system

Consider a single-degree-of-freedom nonlinear hysteretic system under stochastic excitation as shown in
Fig. 7. The motion of the system is governed by the following equation:

m €xðtÞ þ c _xðtÞ þ kxðtÞ þ f ðtÞ ¼ wðtÞ (11)

where x(t) is the displacement; m, c and k are mass, damping and stiffness coefficients, respectively; w(t) is the
zero-mean Gaussian white noise with spectral density Sw; f(t) denotes the Preisach hysteretic restoring force
governed by Eqs. (8)–(10). Introducing the nondimensional parameter f ¼ k=kJ , Eq. (11) can be rewritten as

€xðtÞ þ 2zō _xðtÞ þ ō2xðtÞ þ
f H ðtÞ

m
¼

wðtÞ

m
(12)
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Fig. 5. Geometric interpretation of the Preisach hysteretic force when āXf y;min=kJ : (a) for the ascending status; (b) for the descending

status.
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where ō ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk þ kJÞ=m

p
¼ oJ

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ f

p
, oJ ¼

ffiffiffiffiffiffiffiffiffiffiffi
kJ=m

p
and 2zō ¼ c=m. f H ðtÞ is the nonlinear part of the

hysteretic force, which represents the memory of the hysteretic system. Further introducing the
nondimensional displacement

y ¼
x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2zō3m2

p
ffiffiffiffiffiffiffiffiffi
pSw

p (13)

Eq. (12) can be recast in the following form:

€yðtÞ þ 2zō _yðtÞ þ ō2ðyðtÞ þ cpH ðtÞÞ ¼
_
wðtÞ (14)

where
_
wðtÞ ¼ wðtÞ

ffiffiffiffiffiffiffiffiffiffi
2zō3

p
=
ffiffiffiffiffiffiffiffiffi
pSw

p
with S _

wðtÞ ¼ 2zō3=p; c ¼ ō2
ffiffiffiffiffiffiffiffiffi
pSw

p
=ðf n

y

ffiffiffiffiffiffiffiffiffiffi
2zō3

p
Þ and f n

y ¼ ðf y;max þ f y;minÞ=2;
pH ðtÞ ¼ 2zf n

yf H ðtÞ=ðpSwōÞ. Define nondimensional parameters

n ¼
f y;max � f y;min

2f n

y

;
2f y;min

kJ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2zō3m2

p
ffiffiffiffiffiffiffiffiffi
pSw

p ¼ 2
ð1þ fÞð1� nÞ

c
¼ D (15a,b)
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Fig. 7. Single-degree-of-freedom nonlinear hysteretic system.
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The parameter n monitors the spread of the distributed element. For n-0, the domain A reduces to a straight
line that represents the domain of the individual Jenkins model. For no1, the system possesses a well-defined
proportionality limit. If n ¼ 1, the system exhibits a strongly nonlinear behavior with a vanishing
proportionality limit, and the weighting function has the support of whole domain D. When the

nondimensional amplitude a ¼ ā
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2zō3m2

p
=
ffiffiffiffiffiffiffiffiffi
pSw

p
4D=2, the nondimensional expression of the nonlinear

part of the hysteretic force for the ascending status is

pH ðtÞ ¼
1

4nð1þ fÞ2
� 2 F̃

D
2
;b0P

� �
� F̃

D
2
; b01

� �� �
þHðyðtÞ � b0n�1 � DÞF̃ðy; b0n�1Þ

� ��

�
1

2
2
Xn�1
j¼2

ðF̃ða0j ;b
0
j�1Þ � F̃ða0j ;b

0
jÞÞ � F̃ða0P; b

0
PÞ

" #)
(16)

and that for the descending status is

pH ðtÞ ¼
1

4nð1þ fÞ2
� 2 F̃

D
2
;b0P

� �
� F̃

D
2
;b01

� �� �
þ F̃ða0n;b

0
n�1Þ �Hða0n � D� yðtÞÞF̃ða0n; yðtÞÞ

� ��

�
1

2
2
Xn�1
j¼2

ðF̃ða0j ; b
0
j�1Þ � F̃ða0j ; b

0
jÞÞ � F̃ða0P;b

0
PÞ

" #)
(17)
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When the nondimensional amplitude aoD=2, the nondimensional expression of the nonlinear part of the
hysteretic force for both the ascending status and descending status is

pHðtÞ ¼
1

4nð1þ fÞ2
�2 F̃

D
2
;b0P

� �
� F̃

D
2
;b01

� �� ��

�
1

2
2
Xs

j¼2

ðF̃ða0j ;b
0
j�1Þ � F̃ða0j ;b

0
jÞÞ � F̃ða0P; b

0
PÞ

" #)
(18)

where a0j ¼ aj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2zō3m2

p
=
ffiffiffiffiffiffiffiffiffi
pSw

p
and b0j ¼ bj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2zō3m2

p
=
ffiffiffiffiffiffiffiffiffi
pSw

p
are the nondimensional dominant maximum and

minimum, respectively, and F̃ða0j ;b
0
Þ ¼ ½Dþ ðb0j � a0jÞ�

2=2.

The Preisach hysteretic restoring force generally contains a nonlinear elastic restoring force and a nonlinear
dissipative force, which are coupled. To apply the stochastic averaging method of energy envelope, the
hysteretic force is firstly separated into quasi-linear damping force and elastic force. According to the
generalized harmonic balance technique, let nondimensional displacement and velocity be as follows [21,22]:

yðtÞ ¼ aðtÞ cos yðtÞ (19a)

_yðtÞ ¼ �oðaÞaðtÞ sin yðtÞ (19b)

where yðtÞ ¼ oðaÞtþ jðtÞ, sin y and cos y are the generalized harmonic functions. The hysteretic restoring
force is replaced equivalently by the following nonhysteretic forces containing a quasi-linear elastic force and a
quasi-linear damping force:

ō2pH ðyÞ ¼ CðaÞ _yþDðaÞy (20)

where C(a) and D(a) are determined by the generalized harmonic balance as

CðaÞ ¼ �
ō2

apoðaÞ

Z 2p

0

pH ða cos yÞ sin ydy (21a)

DðaÞ ¼
ō2

ap

Z 2p

0

pH ða cos yÞ cos ydy (21b)

When the nondimensional amplitude a4D=2,

CðaÞ ¼
ō2

apoðaÞ
1

4nð1þ fÞ2

Z p

0

½F̃ða0n;b
0
n�1Þ �Hða0n � D� a cos yÞF̃ða0n; a cos yÞ� sin ydy

�

þ

Z 2p

p
½Hða cos y� b0n�1 � DÞF̃ða cos y; b0n�1Þ� sin ydy

�
(22a)

DðaÞ ¼
ō2

ap
1

4nð1þ fÞ2

Z p

0

½Hða0n � D� a cos yÞF̃ða0n; a cos yÞ� cos ydy
�

�

Z 2p

p
½Hða cos y� b0n�1 � DÞF̃ða cos y;b0n�1Þ� cos ydy

�
(22b)

Due to the generalized harmonic behavior of the response process, the nondimensional dominant maximum
a0n and minimum b0n�1 can be set approximately equal to the nondimensional amplitude a and its opposite
value �a, respectively, that is,

a0n ¼ a; b0n�1 ¼ �a (23a,b)
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Then Eq. (22) becomes correspondingly

CðaÞ ¼
ō2

apoðaÞ
1

4nð1þ fÞ2

Z p

0

½F̃ða;�aÞ �Hða� D� a cos yÞF̃ða; a cos yÞ� sin ydy
�

þ

Z 2p

p
½Hða cos yþ a� DÞF̃ða cos y;�aÞ� sin ydy

�
(24a)

DðaÞ ¼
ō2

ap
1

4nð1þ fÞ2

Z p

0

½Hða� D� a cos yÞF̃ða; a cos yÞ� cos y dy
�

�

Z 2p

p
½Hða cos yþ a� DÞF̃ða cos y;�aÞ� cos ydy

�
(24b)

or

CðaÞ ¼
ō2

apoðaÞ
1

4nð1þ fÞ2
ðD� 2aÞ2 �

Z p

arccos ða�DÞ=a

1

2
½Dþ aðcos y� 1Þ�2 sin y dy

(

þ

Z 2p

2p�arccos ðD�aÞ=a

1

2
½D� aðcos yþ 1Þ�2 sin y dy

)
(25a)

DðaÞ ¼
ō2

ap
1

4nð1þ fÞ2

Z p

arccos ða�DÞ=a

1

2
½Dþ aðcos y� 1Þ�2 cos ydy

(

�

Z 2p

2p�arccos ðD�aÞ=a

1

2
½D� aðcos yþ 1Þ�2 cos ydy

)
(25b)

When the nondimensional amplitude aoD=2,

CðaÞ ¼ 0 (26a)

DðaÞ ¼ 0 (26b)

Thus, the equivalent nonhysteretic nonlinear system can be written as

€yðtÞ þ ð2zōþ cCðaÞÞ _yðtÞ þ ðō2 þ cDðaÞÞyðtÞ ¼
_
wðtÞ (27)

or in the following form:

€yðtÞ þ 2zō _yðtÞ þ ō2yðtÞ ¼
_
wðtÞ; ao

D
2

(28a)

€yðtÞ þ ð2zōþ cCðaÞÞ _yðtÞ þ ðō2 þ cDðaÞÞyðtÞ ¼
_
wðtÞ; a4

D
2

(28b)

Eq. (28) implies that the nonlinear part of the hysteretic restoring force has not any effects on the system when
the nondimensional amplitude aoD=2 and the response is governed by a linear differential equation, and
when the nondimensional amplitude a4D=2, the response is governed by an equivalent nonlinear differential
equation with amplitude-envelope-dependent damping and stiffness coefficients.

The total energy of the equivalent nonhysteretic system (27) can be expressed as

H ¼ 1
2
_y2 þ 1

2
ðō2 þ cDðaÞÞy2 (29)

When _y ¼ 0, y ¼ a so that Eq. (29) yields H ¼ 1
2
ðō2 þ cDðaÞÞa2. By solving this equation, the amplitude

a ¼ a(H) as a function of energy H can be obtained. Then Eq. (27) can be rewritten as

€yðtÞ þ CnðHÞ _yðtÞ þ AnðHÞyðtÞ ¼
_
wðtÞ (30)
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where

CnðHÞ ¼ 2zōþ cCðaðHÞÞ (31a)

AnðHÞ ¼ ō2 þ cDðaðHÞÞ (31b)

in which the frequency oðaðHÞÞ is expressed as a function of the system energy. Hereafter, the superscript ‘‘*’’
of CnðHÞ and AnðHÞ will be omitted for simplicity.

4. Stochastic averaging of energy envelope

Now the stochastic averaging method of energy envelope [23] is applied to system (30). The state equations
of the system are

_Y 1 ¼ Y 2 (32a)

_Y 2 ¼ �CðHÞY 2 � AðHÞY 1 þ
_
wðtÞ (32b)

where Y 1 ¼ y and Y 2 ¼ _y are the nondimensional displacement and velocity, respectively. The intensity
of stochastic excitation

_
wðtÞ is denoted by 2D ¼ 2pS _

w ¼ 4zō3. The Itô stochastic differential equations of
Eq. (32) are

dY 1 ¼ Y 2 dt (33a)

dY 2 ¼ ½�CðHÞY 2 � AðHÞY 1�dtþ
ffiffiffiffiffiffiffi
2D
p

dW ðtÞ (33b)

where W(t) is the unit Wiener process. The system energy is expressed as

H ¼ 1
2
Y 2

2 þ
1
2
AðHÞY 2

1 ¼ HðY 1;Y 2Þ (34)

By introducing the transformation

Y 1 ¼ Y 1; H ¼ HðY 1;Y 2Þ (35a,b)

and using the Itô differential rule, Eq. (33) can be transformed into the Itô equations for displacement Y1 and
energy envelope H as

dY 1 ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2H � AðHÞY 2

1

q
dt (36a)

dH ¼
qH

qY 1

qH

qY 2

� � Y 2

�CðHÞY 2 � AðHÞY 1

" #
þ
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2
tr
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1

q2H

qY 1qY 2

q2H
qY 2qY 1
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2
66664

3
77775
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p
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½0
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BBBB@

1
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8>>>><
>>>>:

9>>>>=
>>>>;

dt

þ
qH

qY 1

qH

qY 2

" #
0ffiffiffiffiffiffiffi
2D
p

" #
dW ðtÞ (36b)

where trð�Þ is the trace of square matrix. Note that

qH

qY 1
¼

AðHÞY 1

1�
1

2

qAðHÞ

qH
Y 2

1

(37a)

qH

qY 2
¼

Y 2

1�
1

2

qAðHÞ

qH
Y 2

1

(37b)
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q2H

qY 2
2

¼

1�
1
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qH
Y 2
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� �
� Y 2 �
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(37c)

Then Eq. (36b) can be rearranged as follows:

dH ¼ �CðHÞ
2H � AðHÞY 2

1

1�
1

2

qAðHÞ

qH
Y 2

1

þD
1

1�
1

2
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1

þD 1�
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1
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8><
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9>=
>;dt
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1

q
1�

1

2
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qH
Y 2

1

dW ðtÞ (38)

The energy envelope H of the system is a slowly varying process and can be replaced in the first
approximation by a one-dimensional diffusion process [23]. For simplicity, the same symbol H will be used to
denote this diffusion process. The Itô differential equation for this diffusion process is obtained by making the
time averaging of Eq. (38). By using Eq. (36a), the time averaging can be replaced by the space averaging with
respect to Y1 under certain H. Thus

dH ¼ UðHÞdtþ V ðHÞdW ðtÞ (39)

where

TðHÞ ¼ 2

Z aðHÞ

�aðHÞ
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V 2ðHÞ ¼
1

TðHÞ
4D

Z aðHÞ

�aðHÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2H � AðHÞY 2

1
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dY 1 (40c)

in which T(H) is determined by oðaðHÞÞ ¼ 2p=TðHÞ. The C(H) can be obtained by Eqs. (25a) and (31a), and
U(H) and V2(H) are determined by Eqs. (40b) and (40c).

The FPK equation associated with the averaged Itô differential Eq. (39) is

qp

qt
¼ �

q
qH
½UðHÞp� þ

1

2

q2

qH2
½V 2ðHÞp� (41)

where p ¼ pðH; tjH0Þ is the transition probability density of the energy envelope H. The stationary probability
density of the energy envelope p(H) is obtained from solving the reduced FPK equation of Eq. (41) as

pðHÞ ¼ C̃ exp �

Z H

0

dV 2ðuÞ

du
� 2UðuÞ

� �
=V2ðuÞdu

� �
(42)
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where C̃ is the normalization constant. The joint probability density of displacement Y1 and velocity Y2 can be
expressed as

pðY 1;Y 2Þ ¼
pðHÞ

TðHÞ

				
H¼HðY 1;Y 2Þ

(43)

and the probability density of the amplitude envelope a is

pðaÞ ¼ pðHÞ
qHðaÞ

qa

				
				 (44)

5. Numerical results

The proposed stochastic averaging technique is applied to system (11) with damping ratio z ¼ 0:01 and
parameter ō ¼ 4p, and numerical results are given in Figs. 8–12. Figs. 8(a)–(c) show the stationary probability
densities of amplitude envelope of the system for n ¼ 1:0 and different values of parameters f and c by using
the proposed technique, Monte Carlo simulation and the analytical expression given in Ref. [19]. It can be seen
that the proposed results are in good agreement with those by the Monte Carlo simulation, and the results in
Ref. [19] are improved, especially for small f and large c. As c decreases, the system response tends to a
Gaussian process and the probability density of amplitude envelope approaches the Rayleigh distribution.

Figs. 10(a)–(c) and 12(a)–(c) show the stationary probability densities of amplitude envelope of the system for,
respectively, n ¼ 0:5 (corresponding to f y;min=f y;max ¼ 1=3) and n ¼ 0:2 (corresponding to f y;min=f y;max ¼ 2=3)
and different values of parameters f and c. However, the analytical expression given in Ref. [19] is usable only for
n ¼ 1:0. In the case of no1:0, D ¼ 2ð1þ fÞð1� nÞ=c40. The system response is governed by the linear Eq. (28a)
when the amplitude aoD=2, and by the equivalent nonlinear Eq. (28b) with amplitude-envelope-dependent
damping and stiffness when the amplitude a4D=2. As f decreases, the nonlinear feature of the system becomes
more pronounced and as c increases, the effects of the nonlinear part of hysteretic force pH ðtÞ on the response
enhance. It is also noticed from Figs. 10 and 12 that the difference between the proposed results and those by the
Monte Carlo simulation increases with the increase of c and the decrease of n and f, which needs to be improved
further. The stationary probability densities of energy envelope of the system for n ¼ 1.0 and n ¼ 0.5 are
illustrated by Figs. 9 and 11, respectively, corresponding to Figs. 8 and 10.

6. Conclusions

A new stochastic averaging technique for analyzing the response of a single-degree-of-freedom Preisach
hysteretic system with nonlocal memory under a stationary Gaussian stochastic excitation has been proposed.
The equivalent nonhysteretic nonlinear system with amplitude-envelope-dependent damping and stiffness was
obtained firstly by using the generalized harmonic balance technique. Then the relationship between the
amplitude envelope and the energy envelope was established, and the equivalent damping and stiffness
coefficients were expressed as functions of the energy envelope. The averaged Itô stochastic differential
equation for the energy envelope of the system was derived finally by using the stochastic averaging method of
energy envelope, and the FPK equation associated with the averaged Itô equation was solved to obtain the
stationary probability densities of the energy envelope and amplitude envelope. The approximate solutions
have been validated by comparing with the results of Monte Carlo simulation. The proposed technique
improves the results given in Ref. [19] by extending the available value of n and incorporating strong nonlinear
stiffness of the system. However, the accuracy of the proposed results falls for large c and small n and f, which
needs to be improved further.
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